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We are concerned with polynomials {p~'} that are orthogonal with respect to
the Sobolev inner product

,
U ~ >; = JfK dip + i. Jf'~' dl/J,

where i. is a non-negative constant. We show that if the Borel measures dcp and dJjJ
obey a specific condition then the I'~; "s can be expandcd in the polynomials
orthogonal with respect to dcp in such a manner that. subject to correct normaliza­
tion, the expansion coefficients, except for the last. are independent of n and are
themselves orthogonal polynomials in i.. We explore several examples and
demonstrate how our theory can be used for efficient evaluation of Sobolev-Fourier
coefficients. I 1991 AcademIC I'rc~'. Ir.c.

1. I]';TRODUCTIO:-l

Orthogonality in Sobolev spaces has attracted considerable attention in
recent decades [1,3-6,8, 10, 17-20]. In the present paper we propose to
approach that oft-discussed problem from a different point of view.
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Throughout, the term "Borel measure" is used to refer to positive Borel
measures cp on the real line, satisfying the conditions

k = 0, 1,2, ... (1.1 )

(finite moments) and

r p(x) dcp(x) >°
-x

(1.2 )

for each polynomial p that is non-negative for all real x and not identically
zero (positive definiteness).

Thus, if dcp and dljl are two Borel measures and 1 is a positive constant,
the Sobolev space W~[( - 00, x;), dcp, dljl] with the inner product

(f,g>;:=j'" f(x)g(x)dcp(x)+)·r.c !,(x)g'(x)dljl(x) (1.3)
-x -~

contains the space of all polynomials and it makes sense to study polyno­
mials that are orthogonal with respect to <', .>;,' Specifically, we say that
the nth degree polynomial p~;'), p~;') t= 0, is Sobolev-orthogonal if

k=O,I, .... n-1. (1.4 )

Note that, of course, the parameter ;. can be absorbed into dljl. This,
however, will defeat one of the purposes of our investigation: to examine
the dependence of p~;') upon A. Note further that the condition (1.2) is
equivalent to the requirement that the support of dcp should contain an
infinite number of points. In other words, we do not allow discrete
measures of the form

fCX- f(x) dO(x) = i Okf(xd·
- '" k ~O

Much is already known about Sobolev-orthogonal polynomials. Some of
the familiar properties of the "standard" orthogonal polynomials can be
translated intact into the more general framework, with obvious
amendments: for example, among all nth degree polynomials with a fixed
coefficient of xn

• p~.) minimizes the norm that is induced by <.,. >;. [IOJ.
Expansion of functions in {p~;')}:~o with respect to the inner product (1.3)
is also a straightforward extension of the classical theory---ef. r1. 4, 18]-
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and it has attracted recent attention [6] because of its relevance to the
analysis of spectral methods for partial differential equations. However,
most properties fail or need be paraphrased to a large extent: three-term
recurrence relations are, of course, lost, as is the Christoffel-Darboux
formula. More importantly, zeros of p~:1 need not belong to the support of
the underlying measures [I].

Two sets of measures have been investigated in some detail:

{

-t:

cp(x) = t/!(x) = x:

I:

(the Legendre case) and

x< -I:

-1 :::;;x:::;; I;

l<x

x<O;

0:::;; x

(the Laguerre case). This led to the derivation of explicit forms, recurrence
relations, and localisation of zeros [1, 4, 8].

Another problem that has recently received some attention is that of
Sobolev orthogonality with atomic measures, inclusive of the case of dt/!
being supported on a finite set [17, 20]. Although, strictly speaking, it
ceases in that case to be a Borel measure, <', .); is, nonetheless, a positive
inner product, as long as dcp is a genuine measure.

In the present paper we study the expansion of p~) in the basis spanned
by Po, PI' ..., Pn' where the Pn's arc orthogonal (in the usual sense) with
respect to the inner product defined by the first Borel measure, dcp. In other
words, P,,:; D" p~O), where D" t= 0 is a constant. Naturally, an expansion of
the form

"
p~:I(X) = I ri"'(i.) Pk(X),

k c I

n= 1,2, ...

(it follows from (1.4) that r~'I:; 0 for n > 0), is always well defined.
However, it turns out that, subject to an extra condition being imposed on
the measures {dcp, dljJ} and under correct normalization, the coefficient r~' I

depends only on its subscript for all k = 0, I, ..., 11 - I. In other words,
subject to the Pk'S being correctly normalized, there exist :x I (I.), :X 2().), '"

such that

n - I

UI( ) _" (.) () + (n,(') ()P" x - 1.. :Xk I. Pk X r" I. P" X
k~1
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for every n = 1, 2, .... This leads inter alia to a recurrence relation of the
form

where (J n can be written explicitly in terms of the ':I.k'S. The last identity can
be employed to evaluate efficiently expansions of Wi functions in Sobolev­
orthogonal polynomials. Section 2 of the present paper is devoted to the
formal derivation of the aforementioned results, whereas in Section 3 we
study specific examples of {dcp, dljJ} that obey the required condition and
in Section 6 we present the fast algorithm for the evaluation of Fourier­
Sobolev coefficients.

Section 4 is concerned with an extension of our framework, whereby p:/'I
can be expanded in Pm's with m and 11 of the same parity and the coef­
ficients of this expansion, except for the last, are independent of n.

The coefficients (Xk (note that we can remove the superscript) turn out to
be themselves orthogonal polynomials, and we devote Section 5 to the
determination of underlying measures.

2. COHERENT PAIRS

Let dcp and dI/J be two Borel measures and ;. ~°a given constant. We
recall the definitions (1.3) and (1.4) of a Sobolev inner product <" .>i. and
a Sobolev-orthogonal polynomial p~i). Moreover, we let Pn and qn denote
orthogonal polynomials with respect to dcp and dljJ, respectively:

eX;

J Pm(X) Pn(X) dcp(x) =bm.ncn,
- :t:

m, n=O, 1, ...,

where 15 m ." is the delta of Kronecker. The P,,'s are normalized so that
p~o)=Pn' We define numbers dm,,, = dn.m by

dm." = f:X; p'",(x) p;,(x) dljJ(x),
- ex:

m, 11 =0,1, ....

Obviously, since {Po, PI' ..., Pn} span the linear space of nth degree
polynomials, there exist r~'>' r\n), ... , r~") such that

II

p::')(x) = L ,.~I)Pk(X).
k. 0

(2.1 )
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Of course, the 'k'S are functions of ;.. In fact, it will be shown below that,
under appropriate normalization, the , k'S are polynomials in ;.. We note
that, since (1.4) with k = 0 implies that

rx

p~:)(x)dcp(x)=O, n;3l,
. - "

necessarily ,~n) = 0 for all n ~ \ and the sum extends from k = \.
According to the definition (1.4), p~/') annihilates Po, ... , Pn- I in the

Sobolev inner product. We utilize the expansion (2.\) to obtain n - 1
homogeneous linear equations in the n unknowns ,\"\ ,~"), ..., ,~"):

II

_. (n)( ') ." d (11)( .) - 0-(",'", J. +1. L k.III'k I. - ,

k=1

m = \, 2, ... , n - 1.

We complement this system with the normalizing equation

n

(11)( • ) ." d (n)( • ) _ (. )cn 'lI I. +A L k.II'k I. -w I.,
k=1

where w will be assigned a specific value in the sequel. Reverting to a
vector form, we have the system

where

(C + i.D) r(n) = well' (2.2)

0:= (dk.l)k.I~ 1..11'

r(n) := [,\"}, r~n), ••• , r~n)F, and en is the nth unit vector. The formal solution
of (2.2) by Cramer's rule is

1 adj(C +AD)
r(1I1=w(C+;.Oj ewe

n = det(C + i.O) n'
(2.3 )

where adj B is the "adjoint" matrix of B. This motivates our choice of
normalization,

._ det(C + i.D)
W.- n I .

Z= I Ck
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Operating on (2.3) yields at once

P
I;.)= [rln) rl"l rln)] [;~]
n 1 ' :2 ~ "0' n .

P"

i.dl." , P,

).d2." , P2
(2.4)

en , + J.d" 1.11-1 Pn 1

).d".11 I P").d".2

).d" _ 1.2i.d" I.,

x det

nz~: ('k

c, + ).dl. l ).dl.2

Ad2., ('2 + ).d2. 2

Note that our choice of w implies that, indeed, p:,OI = p".
The last formula is, as such, neither surprising nor very interesting for

arbitrary Borel measures. Things, however, change when we confine our
attention to a subset of measures that possess an important feature: We say
that the pair {dC{), dl/J} of Borel measures is coherent if there exist non-zero
constants C" C2 , •.. such that, for all k, m = I, 2, ... , CkCmdk.m is a function
of min {k, m} only. Without much danger of confusion, we write

, _ dminjk.mi
(k.m - C C' .

'k m

We renormalize the underlying polynomials

CmPmf-+ Pm' m=O, I, ....

Hence dk.mf-+dmin{k.mi and C~Cmf-+('m' This produces the expression

c1 + ).d, ).d, i.d, p,

Ad, ('2 + Ad2 i.d2 P2
0.1 I

P" =n"-l detk ~ , c.
i.d, i.d, (' 1 +).d" , P" In-·

).d, Adz Ad" _ , P"

Next we subtract the bottom row from the remaining row to obtain
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Ul_ 1
P" -n,,-I

k ~ 1 Ck

C1 ),(d l - d2 ) ),(d l - d))

0 C2 )'(d2 - d»)

0 0 C

x det
)

0 0 0

),d l Adz ),d)

).(d l - d" tl PI - P2

;.(d2 -d" I) P2-Pn

).(d)-d"_l) P3-Pn

(2.5)

Except for the bottom row, we have an upper triangular matrix. To
evaluate its determinant in a closed form, we seek Gaussian elimination
coefficients to induce zeros into the bottom row: These are functions
Ct l().), ~2(J·), ..., Ct. n -I()') such that

m--l

).dm-;. L (dm- dd Ct. + CmCt.", = 0,
k~1

Note that the Ct.",'s do not depend on n.

m=I,2, ...,n-1. (2.6)

LEMMA 1. The solution of (2.6) obeys the three-term recurrence relation

(2.7)

Proof We set

(/J:= Cm ~ I(d", - dm tl'~m+ 1 - {c",(dm+1 - d", -1)

+),(dm+l-dm)(d",-dm_I)}Clm-Cm l(d",+I-dm)Ct.m I' (2.8)

Rearranging (2.6) yields

We replace C/~I for IE {m - I, m, m + I} in (2.8) by the above expression
to obtain
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(/J = i. { (d", - dIll
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-(d",+,-d",)C~~(d", ,-dk):Xk- d", I)
-(d",+,-d".)(d",-d", ,):x",}=o.

The proof follows. I
Notc that, in ordcr that (2.7) defines :X",~1' it is necessary that

dm - dm . 1 =1= O. It can be easily seen that this is. in fact, the case: if
dm = dm _ I then the mth and (m - I )st rows of the matrix D coincide and
D is singular. This is impossible, because D is a Gram matrix of linearly
independent polynomials. An alternative proof is implicit in the statement
of the second corollary to Theorem 2.

The three-term recurrence relation (2.7) is accompanied by the initial
conditions

(2.9)

(2.10)

Once the :xm's have been determined by (2.7), (2.9)- (2.10), we evaluate
the determinant in (2.5) by forming the product of the diagonal terms,
except that we must replace p" by the outcome of the elimination proce­
dure in the (n, n)th entry of the matrix, namely p" + L~ =: ak(Pk - PIll. The
result is

(2.11 )

Comparing with (2.1), it follows at once that we can identify r~) with :X m

for m = I, 2, ..., n - I. In particular, it is a consequence of our analysis that
r~) is independent of n for m = I, ..., 11 - I. Before we formulate our results
in a theorem, we need to take care of the coefficient of P",

The identity (2.6) implies that

m 1 In-I

I. L dk!:J.k = - C",a m - I.dm + i.dm L 'J. k ·
k = I k·.. 1

(2.12)
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We shift the index by one in the last equation and add i.dm 1 'Y. m 1 to both
sides to obtain

m- 1

i. L dk (X k = - Cm

k 1

m 1

l'Y. m 1 - i.dm 1+ i.dm 1 L 'Y.k·
k 1

(2.13 )

Next, we solve Eqs. (2.12)-(2.13) for I.Z'_ / 'Y. k and I.~'- / dk'Y.k' This yields

11/ 1 • (X C :xL :Xk=I+(m,m-m 1 m-1
k-I I.(dm-dm I)

Substitution into (2.11) finally produces the expansion of Sobolev­
orthogonal polynomials:

THEOREM 2. If {dcp, dljJ} fc)rm a coherent pair then

" 1 ( • ) ( , )
(i.) _", C,/1." I. -C" 1:X" 1 I. ,

p" (x)- L. 'Y.k(A) Pk(X)- '(d -d) P,,(.x),
k - 1 I." ,,1

(2.14)

where :x I' :x 2 , ... , a" _ 1 ohey the three-term recurrence relation (2.7).
Consequently, the coefficients 1'1"), k = I, "., n - I, depend only on their
suhscript. I

COROLLARY. Suhject to coherence, it is true that

(i.) Ii.) '_ ('",I:XI/' I(}.) - c,,:x,,().)
PI/_I(X)-P" (.\)- - '(d -d) (P"~I(X)-PI/(x)),

I~ fl + 1 n

(2.15 )

Proof We subtract (2.14) from a corresponding expression for P~I'11'

This produces

JUI _ (n. __ c"+I'Y.,,+d i.)-c,,:x,,(i.) ,
I,,+I(X) p" (.\)- '(d -d) P".I(x)+a,,(/.)p,,(X)

)~ n tin

c"a,,(i.)-cl/ l'Y.l/_di.)
+ .( I d Pl/(X)'

1_(,,- n I)

It follows from (2.6) that

and substitution in (2.16) furnishes the required expression. I

(2.16)
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The definition of coherence may seem at first sight rather strange and
difficult to verify. Fortunately, we are able to show that it is equivalent to
a condition that is far less technical.

THEOREM 3. The pair {dcp, dt/J} is coherent if and only if there exist non­
zero constants C 1 , C2 , ... such that

n= 1, 2, .... (2.17)

Proof Let us first assume that {dcp, dt/J} is coherent. Hence there exist
non-zero C I' C2' ... such that

k,m=I,2, ...

and it follows at once that

f'- p;,,(x)( C".,. 1 P;l+ I(X) - c" P;J")) dt/J(x) = 0,,
m= 1, 2, ... ,n.

But {p;, p~, ..., p;,} spans all (n - 1)th degree polynomials, hence, (2.17) is
true.

The opposite statement follows just as readily, be reversing our argu­
ment: assuming that (2.17) holds, we have

... IX: t> ~x:

0= j . Pm(x) q,,(x) dt/J(x) = J p~,(x)(Cn+IP~+I(x)-Cnp~(x))dt/J(x)
-~ x

for all m = 1, 2, ... , n, therefore,

dm . n , 1 = CC
n

dm .",
n+1

m= 1,2, ...,n.

It follows that CnCmdn.m is independent of n for all m ~ n and depends only
on m = min {m, n }-precisely the definition of coherence. I

COROLLARY. Subject to coherence and assuming, without loss of
f?enerality, that Cn=1, it is true that

d,,+I-d,,=e,,>O,

In particular, d".,. 1 - d" never vanishes.

n = 0,1, .... (2.18 )
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Proof Subtracting

, '
dl/= I p;,(X)p;" ,(x)dl/!(x)

.. :I.

from

dn + 1= f' P;'11 2(X)dl/!(x). .,.

results in

'Ox.

dl/ +, - dl/ = I P;I+ ,(X)(p;, + ,(x) - p~(X)) dl/!(x)
..' ~.r~

161

= r
x

p;,+,(X)ql/(x)dl/!(x)= r-<
.. _ ~f. tI .. l'

Note that we have exploited the identity

r' p;,(X)ql/(x)dl/!(x)=O
.. - f

in the derivation of the last expression. I

COROLLARY. Subject to coherence and assuming, without loss oj'
generality, that en == I, it is true that

(2.19)

Proo{ A straightforward juxtaposition of Theorems 2 and 3. I

Before we conclude this section it is worthwhile to note that the three­
term recurrence relation (2.7) can be rewritten in a simplified form

involving ef/ = df/+' - dn'

cm + 1em - l:'X m + t (i.. )

3. COHERENT PAIRS AND CLASSICAL ORTHOGONAL POLYNOMIALS

Given two Borel measures dcp and dl/!, we say that dl/! is a companion of
dcp if {dcp, dl/!} form a coherent pair.
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In the present section we assume that d<p is a measure that produces one
of the classical orthogonal polynomials-Jacobi, Laguerre, or Hermite-­
and seek its companions. According to a theorem of Hahn [II], classical
orthogonal polynomials are precisely all the orthogonal polynomials whose
derivatives are also orthogonal with respect to some Borel measure dv.
Let us denote the monic orthogonal polynomials with respect to dv by
7to, 7t I' .... Thus,

1 ,
7t,,(x) = n + 1 P", I(X), n=O, 1, ... ,

where we stipulate, without loss of generality, that the Pn's are monic. The
main tool of our analysis is the identity (2.17), which expresses the q//'s,
subject to coherence, in terms of the 1r" 'so

Suppose that the 1r" 's obey the recurrence relation

We let

1r", .(x)=(x-C(//)7t//(x)-fJ//1r// I(X). (3.1 )

q//(X) :=1r"(x)-a,,1r,, I(X), n= 1,2, ...
(3.2)

(hence the q,,'s are quasi-orthogonal with respect to dv [7]) and seek real
constants ai' a2, ... #- 0 such that {qn } :"= 0 is an orthogonal polynomial
system. According to the Favard theorem [7], this is the case if and only
if the q//'s obey a three-term recurrence relation, which we write as

qn+I(X)=(X-Yn)q,,(x)-i5//q// I(X).

Substitution of (3.2) into (3.3) yields

1r"~I(x)=(x+a//, l-Yn)7tn(x)

- (anx - an'in + i5,.) 7t// I(X) + an li5 n 7tn_2(x).

(3.3 )

We now exploit (3.1) to replace 7t// ~ 1 and tt n 2 in the last formula. This
gives

(
a" _1bn ) )+ a//-~ x 7t// (3.4 )
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Let us examine (3.4). Since n" _ 1 and n" cannot share zeros, both sides of
the equation must necessarily vanish. Thus, we obtain

a"_l b,,
::I." + a" + I - I" - -[-/-- = 0,

" I

a"_l b,, °a,,----= .
P"-l

The identity (3.7) yields

e5 (J" n
,,=--fJn 1

(J" 1

(3.5 )

(3.6 )

(3.7)

(recall that the (J" 's do not vanish!) and substitution in (3.5 )-( 3.6) results
10

::I." + (J" I I - ~'" - (J" = 0,

~_P"+ _'>::I." _ 1 - I,,·
a" I (J"

Substitution of (3.9) into (3.8) gives

(3.8 )

(3.9 )

P"a" + 1 +::1." + - = (J" + ::I."
(T"

P,,-I
1+--·

(T" 1

Consequently, the quantity (T" + I + ~" + P"/(T,, is independent of n and there
exists a real number ~ such that

We now set

Au := 1,

11 =0, 1, ....

11 = 1,2, ....

(3.10)

Thus, (J,,=A,,/A,,_I and substitution into (3.10) affirms that each A" is a
monic 11th degree polynomial in ~ that obeys the recurrence relation

(3.11 )
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Note that the recurrence relations (3.1) and (3.11) are identical, although,
of course, they are subject to different initial conditions. The general solu­
tion of (3.11) can be expressed as {an"e>;) + (1 - a) n:/ I(X)}: (l' where the
n~,' J's are the numerator polynomials corresponding to the measure dv [7].

It now follows from (3.3) that, for all 11 = I, 2, ... ,

I
q,,(x) = A (V) (A,,-l(O nn(x) - AI/(~) n" ,(x)). (3.12)

1/- 1 S

Polynomials of this form were already investigated in [9, 12, 15, 16, 21,
22], mainly because of their connection with Christoffel weights of certain
quadrature formulae. In particular, Maroni [21] proved that, subject to ~

being outside the (open) essential support of dv and to dv corresponding to
one of the classical orthogonal polynomials, they are orthogonal with
respect to the measure

• V dv(x)
(1- c) o(x- s) dx+ c--,

Ix-~I

where 0 < c ~ 1.
In the case of a Jacobi measure,

(3.13 )

dq)(x) = (1- xV (1 + x)/3 dx,

where a, fJ> - 1, it is well known that

dv(x)=(I-x)x+l (I +x)'t/ldx,

XE (-I, I),

XE (-1,1)

[23]. Thus, letting ~= -I and c= 1 in (3.13), we obtain

dl/t(x) = (1- x)' +' (I - ~"d dx,

as a particular example of a companion of dq).

Likewise, the Laguerre measure

.tE(-I, I)

dq)(x) = x'e -x dx, x> o.

where 'X > - I, yields

d/}(x)=x~+'e'dx, x>O

[23]. Thus, an example of a measure that results in a coherent pair follows
when we choose ~ = 0 and c = I in (3.13): in that case dl/J(x) == dq)(x).

Finally, it is easy to see that if

dq)(x) = e x'dx, .tE(-X, ,x),
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the Hermite measure, there exists no companion, since the support of dcp
(and hence of do) is the whole real line and we cannot chose a real number
~ in (3.13).

4. SYMMETRICALLY COHERENT PAIRS

If both measures dcp and dl/J are symmetric (i.e., invariant under the
transformation X 1--+ -x) then p::-l, p", and q" are of the same parity as n.
Therefore, expanding p~-) in Pm's, only terms that share the parity of n are
present. Consequently, expansion coefficients depend on parity and the pair
{dcp, dl/J} cannot be coherent. (Note the lack of symmetry of the com­
panions (I - xl' t , (I + x)' dx, (1 - xt (1 + x)' t' dx found above for the
symmetric Jacobi measure (I - x)' (I + x)' dx, :x> -I.) Fortunately, a
relatively minor generalization of coherence caters for this situation.

Given symmetric dcp and drjJ, we say that {dcp, dl/J} is symmetrically
coherent if

k and m are of the same parity;

otherwise.

Moreover, a measure dl/J is termed a symmetric companion of dcp if the pair
{dcp, dl/J} is symmetrically coherent. All the results of Section 2 translate to
this framework, with obvious amendments:

THEOREM 4. (a) The pair {dcp, dl/J} of symmetric measures is sym­
metrically coherent if and only if there exist non-zero constants C" ('2' ...

such that

q,,(x) = C"., p;" ,(x) - C" ,p;, ,(x).

(b) Subject to symmetric coherence and assuming that, without loss of
generality, C" =I, it is true that

f"':2]--' > ('J (oJ
o"()_" • ("a" t. -c" 21J." 2 t.

p" X - 1... 1J.,,_2k(t·)P,,_2k(x)- O(d -d) p,,(x),
kl I~n 112

where the !Y.k'S obey the three-term recurrence relation

(c) Subject to the same conditions, it is true that

PUl ()_ (/.) ()=_C"t,:X".l(J.)-C" ,:X" ,(i.)
"t' X P" 1 x O(d -d) (P""'l(X)-P,,_,(x))

). "1 1 " - 1
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and
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~( (;.) ( )_ ';.) (. )) __ ('"+1:(,,+1(/.)-(',, IX"

I p" t ,X p", x - '(d _ d
(X I, "tl ",)

I (i.)
q,,(x),

We need symmetric measures for symmetric coherence and our first
example is the Hermite measure dq>(x) = e ,C dx, - oc < x < x, that
already has been debated in Section 3 in the context of coherent pairs.
Thus. we have

and the polynomials q", being themselves orthogonal with respect to a
symmetric measure, obey a three-term recurrence relation of the form

(4.1 )

Since q" = CII + I H~, , - C" ,H;, , and H;, = 2nH" . I' substitution into
(4.1 ) yields

(n+2)C"+2H"~,-nC,,HIl ,=a"x((n+I)C"t,HIl-(n-I)C, ,H"_2)

-f"(nC"H,, ,-(n-2)CI/ 2 H" J).

Replacing H n +, with 2xH" - 2nH" _ , and H" .1 with (xH" _2 - ~ H" I)i
(n - 2) leads to

x(2(n + 2) C" t 2- (n + I) a"C". I) H"

+ (-nC" + nl"C" + !I,C" ... 2 - 2n(n + I) CII t 2) H II 1

+x((n-l)a"C"l-f~C" 2)H" 2=0.

Next, we substitute (xHI/ I - !H,,)!(n - I) instead of H" 2' This yields

A,~xHIl(x) + (B: + C:x2) H" ,(x) = 0,

where

1 1 f' C
'+2n-1 " II 2'

c,~ = a"C"
1 .

1 ---I 1"C" 2'n-
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As in Section 3, it follows that A,~ = B,~ = c.~ = 0, since H" and H" ,
cannot share zeros. We obtain

n C" 22(n+2)C"+2+C"
u"=--I-(' C' '(' .

n - n _. In"+ 2" ."

. 2(n +2) C" 1 2 +C"
.I,,=n (' '(' ,

n~,,+2 II 2

where

I) C"",fJ,,:=(n+ ~
" ,

obeys the non-linear recurrence

n =2,3, ...,

(n - I )(2p" ,+ I) p", , == Pt!" (4.2)

It is easy to see that any initial conditions PI' fJ2>0 produce in (4.2) a
positive solution sequence. In that casc a,,, I" > 0 and the measure that
gcnerates {q,,} is positive definite. Thus, wc have an example of a measure
that has an infinite number of symmetric companions (and, as we have
demonstrated in Scction 3, no companions, whcther symmetric or not).

Our next example of a symmetric measure with a symmctric companion
is the Gegenhuuer measure dqJ(x) = (I - x 2)" '2, X E ( - I, I), where v> O.
Thus, p" = C;;, the Gegenbauer polynomials [23]. Special cases include
I' = L the Legendre measure, and I' = I, the Chehyshev measure of the
sccond kind. We do not try to find all the symmetric companions-a single
example will suffice. Since

d r I' • "C (\) C l(x)}==2(n+v)C,',(x)-, l " .. ,. - "(X

[23], it follows at oncc that the Gegenbauer measure is a symmetric com­
panion of itself.

This construction fails when I' = 0, since Gegenbauer polynomials are not
defined. This is an important special case, since it corresponds to the
Chehyshev measure of thc first kind. Fortunately, this measure is a com­
panion of itself for p,,:= T", C" := lin, as can be seen at once from

d {T" + , Tn ,} . .
d
- -- - --I = V" - U" 2 = 2T" .

.\" n+1 n-

Notc that the framework of Section 3 can be extended to symmetrically
coherent pairs, thereby characterizing all the symmetric companions of
Gegenbauer and Hermite measures.
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5. ORTHOGONALITY RELATIONS OF THE EXPANSION COEFFICIENTS

We have seen that, {dcp, dljJ} being a coherent pair, the expansion coef­
ficients in (2.1), except for the last, obey the recurrence relation (2.20). In
the present section we investigate some implications of this relation. Note
that we replace ;. with x, to emphasize that it is now the main variable,
rather than a parameter.

THEOREM 5. Let

n=O, 1, ....

Then the set {Rn};:O~ 0 is orthogonal with respect to some Borel measure.

Proof We have from (2.9)-(2.10) and from (2.18) that

(5.1 )

Moreover, the identity (2.20) is "translated" into

The coefficients Cm and em are positive for al1 m = 0, 1, .... We now invoke
the Favard theorem [7J to deduce that there exists a Borel measure dX
such that

rx

Rm(x) Rn(x) dX(x) =0,
·x

m#n. I

The general connection between the measures dcp, dljJ, and d"l. has not
been clarified as yet. However, several special cases are amenable to
analysis. It is convenient, first, to rewrite (5.1) (5.2) in terms of monic
polynomials. These are R" such that

(5.3 )

this can be readily verified, e.g., by using formulae from [7].
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We have proved in Section 3 that the Laguerre measure is a companion
of itself. We havepll=q//=L:"l,:x> -I, and

ell = en =
r(11+et+l)

n!
n = O. I. ...

[23]. Writing Rf~(X) := R//(2x - 2), we act on (5.2) to obtain

(II + 1)(11 +2 + x) R~ I dx) = (II + 2)(2(n + I) x + x) R:(.\:)

- (n + 1)(11 +2) R~ dx).

They can be converted to their monic version:

(5.4)

We compare (5.4) with the recurrence formula for the monic Po/laczek
polynomials

A. ( h) A. 11(11 + 2i. - I) A.

P;;t'(X)= x+ . P;;(X)-4(' 1)(' )p;; ,(x),
II +.t'. +a n+I.+a- 11+1.+a

where a, h, i. E.X and a + i. > 0 [7]. It readily follows that the formulae
coincide for the choice a = - x/2, h = :x/2. and i. = I +x!2. Consequently,

(n + I)! '+>2 ( I.. :x X)R//(x) = p// 1+-
2

,\, -2-'2 .
(2 + x)//

Orthogonality properties of Pollaczek polynomials are known when a ~ Ihl
[7]. This corresponds to the case et E ( - I, 0] and we have

dX(2x - 2) = (l - x 2)lI2H' t ,rj exp (:x (cos 'x _~)(: : ::)'2)

I (
X( (I-X)12))J2x r I +2 I + i I + x dx, X E (-I. 1).

The support of dX is the interval ( - 4, 0). If x = 0 then dX reduces to a shif­
ted Chehyshev measure of the second kind. Note that the underlying
measure has been identified for other values of a and h in [2].

The next object of our attention is the Jacohi measure. We proved in
Section 3 that a coherent choice is

=(-1)// ,(x+{1+2)// , pl,./IJ
p// (x+2)// I ,,'

q = ( - I )" (x + fJ + 2)// (x + [/ + 2n + 2) Pl, ... I./Ii.

// 2 (x+2)" //
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We now exploit the identity
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" I
J I (I-x)~(1+x)li(p~~·'I)(x))2dx

2 >+ /l + 11'(1 + (X) 1'(1 + [3) (1 + (X) n (1 + [3)n

1'(1 + (X + [3) n! (I + (X + [3)n (I + (X + [3 + 2n) .

Setting

2>+11+ Ir(l + (X) F(I + [3)
C(~·/l) '= ------'-----'----'----'..--'.

. F( 1+ .(X + [3) ,

we obtain

c = C(~./l) ( 1 + (X)2 (1 + [3)" (1 + r:t. + [3)"
" 1+(X+[3 n!(I+(X)n(1+(X+[3+2n)'

C(~ + 1.11) (I + [3)" (2 + (X + [3)n
e =--- --~'-'-----_.:..--'.::

n 4 n! (2 + (X)"

and (5.3) gives

(5.5 )

where

(3 + a + fJ + 2n + J(l + a)2 - [32)(3 + (X + [3 + 2n - J(l + a)2 - 132)
an = ,

(1 + n)(2 + a + 13 + n)(3 +); + 13 + 2n)

b =4 (1+tx+n)(I+[3+n)
" (1 + n)(I + (X + 13 + n)( 1+ a + 13 + 2n )(3 + (X + [3 + 2n)

Some combinations of a and 13 yield simplified recurrences (5.5). For
example, letting [3 = 0 produces

" ( 2)" I"Rn+l(x)= x+ n + v + 1 Rn(x)-(n+v)(n+v+I)Rn I(X),

where v :=!(l + a). The underlying measure dX has not been identified.
Analysis of symmetrically coherent measures is similar to Theorem 5,

except that now we have two different three-term recurrences, one for
"even" polynomials E" (i.e., those that appear in the expansion of p~~) and
one for "odd" polynomials On' Our last example concerns the Gegenbauer
measures. Since
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[23], simple calculation leads to the monic recurrences

" { 2V2+(4n+5)V+(2n+I)(2n+3)}"
EI/+ 1 = x+ En

8(n + I)(n + V+ 1)(2n + V+ 1)(2n + V+ 3)

(2n + 1)(2n + 2v + I) "
- 64(/1 + 1)(n + V )(2n + V )(2n + V + 1)2 (2n + V + 2) EI/ 1
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and

"{ 2v
2
+(4n+3)v+4n(n+l) }O"o - x + -------:.----'-------'-----'---

n+l- 2(2n+ I)(2n+v)(2n+\'+2)(2n+2v+ I) n

n(n+\') 6
- 4(2n + 1 )(2n + v-I )(2n + V)2 (2n + V + 1)(2n + 2v - 1) 1/ l'

They remain true for the Chehysher.; measure of the first kind, i.e., when
v=o.

A very special case is the Legendre measure, which is obtained for V =!.
In that case we have

"{ 2 } "En +
, = x+(4n+3)(4n+7) E/I

1 "- E .
(4n + 1)(4n + 3)2 (4n + 5) /I - 1 ,

"{ 2 } .
01/+ 1 = X + (4n + 1)(4n + 5) 0/1

1 "- 0
(4n-I)2(4n+I)2(4n+3) n1'

(5.6)

(5.7 )

To identify dil:.) and dX(O', the "even" and "odd" measures in the Legendre
case, we recall for future reference that the modified Lammel measure has
a discrete spectrum, with jumps of I/j~_ l.k at ± 1/j,. _l,b k = 1,2, ..., where
j".k is the kth zero of the Bessel function J" and v> 1. The underlying
monic orthogonal polynomials posssess the three-term recurrence relation

" . 1.
h/l+'v(x)=xh,,,(x)- h/l IV(X) (5.8)

. . 4(n+v-I)(n+v) .

[7].
Let dp. be a symmetric Borel measure that generates monic orthogonal

polynomials {sn} with the three-term recurrence relation

(5.9)
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Since .1'" retains the parity of n, 1,,(x) := .1'2" + I(.,/~ )/V~ is a polynomial and
it)s wel~ known that it is orthogonal with respect to the measure
VX dj1(Vx), supported by x E (0, .Y..;) [7]. It is quite easy to prove that the
1" 's obey the recurrence relation

(5.10)

We map X 1-+ -x in (5.6). It is now straightforward to verify that (5.6) and
(5.10) coincide for the choice

. I I
1.,,= . 1'=-

4(n + \' - I)(n + 1') 2'

Thus, exploiting the connection between (5.9) and (5.1 0), we deduce that
di!:.) is a "one-sided" modified Lommel measure. Likewise, v = ~ recovers
the recurrence relation for 6". But

(
2)12

J 12(=) = 7E cos Z, (
2 )1 2

J 12 (z) = nz sin z,

and it transpires that dX(!:.) is an atomic measure with jumps of l/k 4 at
-1/(n2k 2

), k = I, 2, ..., whereas dX(O) is an atomic measure with jumps of
I/(k + ~)4 at -1/(n 2(k + ~)2), k = I, 2, ....

6. EVALl:ATIOl\; OF EXPANSION COEFFlClE:-;TS

Orthogonal polynomials can be evaluated very fast and robustly by
using their three-term recurrence relations. This is of major importance in
approximating the coefficients of expansions (generalized Fourier coef­
ficients) by quadrature. We are denied the comfort of a three-term
recurrence relation in the case of Sobolev-orthogonal polynomials.
However, if {dC{), dljJ} form a coherent or a symmetrically coherent pair,
calculation of Sobolev-orthogonal polynomials and of Sobolev-Fourier
coefficients can be accomplished efficiently. In the present section we
present an algorithm for that purpose. Another technique, as well as a
discussion of few examples and approximation-theoretical aspects, appears
in [14].

Any fEW ~ [( - ex" (Y), dC{), dljJJ can be expanded in Sobolev-orthogonal
polynomials,

t'~ ~ .i:,().) Ii)
. L. '0.) p" '

,,~() p"
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j"(')- <I' (;.).
,,1... - "P n i.'
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We assume that {dq>, dlji} is coherent (the case of symmetric coherence
is similar) and adopt the terminology of Section 2. Furthermore, we
stipulate that the polynomials were normalized so that em == 1. We define

. c"+':X"+l(A)-c,,:X,,(i.)
(J,,(/.):=- . d .

I.(d" I 1- n)

Thus, it follows from Theorem 2 and its corollary and from the second
corollary to Theorem 3 that

P~:~, - p:: 1= (J,.(Pn> 1 - Pn);

P,:;}; - p~:I' = (J"qw

(6.1 )

(6.2)

This are the key formulae that enable us to evaluate Fourier coefficients
efficiently.

Let

('ex:

(g" g2)1 := I g,(x) g2(X) dq>(x),
oj J.

(h" h2 )2 := r I. h,(x) h2(x) dlji(x),
• - J

where g, and h, belong to appropriate Hilbert spaces. It follows from the
definition (1.3) of the Sobolev inner product that

r - (f (;.J) + '(f' (;.1').J,,- ,P" , I. ,p" 2,

Multiplication of identity (6.1) by f and integration yield

(f, P~:'ll)l = (f, P~')l + (J,,{(f, P,,+ 1)'- U: Pn)!} (6.3)

and (6.2) similarily leads to

(6.4 )

Equations (6.3) and (6.4) combine into the recurrence

in + ,p.) = fn(i.) + (JnP·){ U: P" + d, - (f' Pn)' + i'(f" qnh}· (6.5)

Thus, to evaluate the in's it is enough to calculate first the standard
generalized Fourier coefficients {(f, Pn)l} and {(f', qnh} and then use the
recursion (6.5 )-there is absolutely no need whatsoever to form Sobolev­
orthogonal polynomials p~n explicitly!
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To evaluate (T" with ease we either use its definition and the recursIOn
(l.lO) or combine that recursion with the identity

an == (J" 1 - ~,n

that can be easily derived from the theory III Section 2, and the initial
condition (J 0 = 1.

Another sequence that needs 10 be evaluated is tp;;')}, and also this task
can be performed efficiently by exploiting coherence. We multiply both
sides of (6.1) by p~:) and evaluate the Sobolev inner product. Since
(p~).l"p~:·»;=O, we have

and

gives

(6.6 )

Multiplying (6.1) by PII. I and evaluating the (., ')1 inner product yield the
identity

(6.7 )

since orthogonality implies that (p" .. " PII)! = (p" I I' P:,).))] =0. Shift of the
index in (6.7) and substitution in (6.6) give

(6.8)

To sum up, we managed to reduce the evaluation of Fourier-Sobolev
coefficients to the evaluation of standard expansion coefficients with respect
to dq> and dt{! -a task that is easy and safe to accomplish by virtue of
orthogonality-and a simple recursion.
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